Preliminary communication

HYDRIDIC REDUCTIONS OF CARBON MONOXIDE TO HYDROCARBONS ON IRON COMPLEXES

ANDREW WONG and JIM D. ATWOOD*

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214 (U.S.A.) (Received June 30th, 1980)

Summary

Treatment of $Cp_2Fe_2(CO)_4$ with LiAlH₄ produces CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 , C_4H_8 and C_4H_{10} . The exact ratio depends on the amount of LiAlH₄ used and on the length of reaction. All reactions were carried out with LiAlD₄, confirming that CO is reduced with LiAlH₄ as the only hydrogen source. By preparing potential intermediates $(CH_3FeCp(CO)_2, C_2H_5FeCp(CO)_2$ and $CH_3C(O)FeCp(CO)_2$) and treating them with LiAlD₄, we have found evidence for a CO insertion mechanism in chain propagation. Other hydridic reagents were used, the reactivity for the reduction of CO decreases LiAlH₄ > NaBH₄ > LiEt₃BH.

Reactions of complex hydrides with transition metal carbonyl complexes have been reported [1-12]. These hydrides have facilitated substitution reactions [1,2], and have been used to prepare transition metal hydrides [3], transition metal anions [4], and formyl-transition metal complexes from coordinated carbon monoxide [5-12].

The search for homogeneous analogues of Fischer-Tropsch chemistry has been vigorous in recent years [13-19]. Reduction of carbon monoxide to methane [16,17], methane and ethane [18,19], and mixtures of low molecular weight hydrocarbons have been observed [20]. Formylmetal complexes have been proposed as important intermediate in the reduction of CO [20-23]. A number of stable formyl complexes, both anionic and neutral, have been prepared by reaction of a metal carbonyl with a hydride transfer reagent such as HBR₃⁻ (R = ethyl and s-butyl) [8-12]. Formylmetal species were usually not observed when multihydridic reagents (LiAlH₄ or NaBH₄) were used [1,12,13]. It seemed most likely that formyl complexes were initially formed, but that the by-product MH₃ (M = Al, B) caused further reduction.

As a part of our investigation of the reactivity of CO with both carbon and

oxygen coordinated, we have observed that $LiAlH_4$ can reduce a number of metal carbonyl complexes to hydrocarbons from C_1 to C_4 .

In a typical reaction 0.5 mmol of $Cp_2Fe_2(CO)_4$ was mixed with a 10-30 fold excess of LiAlH₄ in a reaction vessel containing a syringe inlet. The vessel was evacuated and then solvent (10 ml) added via syringe. Gas samples were analyzed by gas chromatography (Varian 2440 and HP 5750) on Spherocarb (60°C) and Poropak Q (90°C) columns and by GC/mass spectrometry*.

The reaction of $Cp_2Fe_2(CO)_4$ with a 20-fold excess of LiAlH₄ in THF at room temperature was rapid with completion in about 1 h leading to the formation of CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 , C_4H_8 and C_4H_{10} **. Reaction of LiAlH₄ with THF also occurs on this time scale leading to CH_4 , C_2H_4 and C_2H_6 in much smaller amounts. Although the solubility of LiAlH₄ in toluene is very small we found that the reaction of $Cp_2Fe_2(CO)_4$ with LiAlH₄ in toluene produced CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 , C_4H_8 and C_4H_{10} similar in amount and ratio to the reduction in THF. Use of $LiAlD_4$ in toluene at room temperature produced only totally deuterated hydrocarbons to the limits of detection confirming reduction of CO with LiAlD₄ as the only hydrogen source. The reductions in toluene were much slower with completion in about 10 days with the exact ratio of hydrocarbons varying with the amount of LiAlH₄ and with time**. The amounts of the three olefins (C_2H_4 , C_3H_6 , and C_4H_8) decrease very dramatically with time. Table 1 illustrates the products observed and the changes in time. The yield of hydrocarbons was 40% per mol of iron complex.

LiCpFe(CO)₂ and Cp₂Fe₂(CO)₄ both remained in solution (as shown by IR spectra) even when a 30-fold excess of LiAlH₄ was used [19]. It seems likely, however, that HFe(Cp)(CO)₂ formed initially, but then decomposed to $Cp_2Fe_2(CO)_4$ and H₂. Hydrogen is observed but the possibility of it arising from another reaction of LiAlH₄ cannot be ruled out. When the reduction is carried out with PBu₃ and a 10-fold excess of LiAlH₄, LiCpFe(CO)₂ and HFe(Cp)(CO)PBu₃ were the only products observed by IR and NMR in solution.

TABLE 1

	30-fold LiAlH4		Reduction by LiAlH ₄ under an atmosphere of CO
	36 h	14 days	14 days
CH	0.028	0.178	0.038
C ₂ H ₄	0.044	6 X 10 ⁻⁴	0.691
C ₂ H ₆	0.024	0.14	0.043
C,H,	5 X 10 ⁻³	9 X 10 ⁻⁴	0.009
C ₃ H ₈	4×10^{-3}	0.023	0.006
C ₄ H	9 X 10 ⁻⁵	3 X 10 ⁻⁴	0.0005
C ₄ H ₁₀	7×10^{-5}	5×10^{-4}	0.0005

GASEOUS PRODUCTS FROM THE REDUCTION OF CO ON CP_Fe2(CO), BY LIAIH, IN TOLUENE^a

^a The yields reported are mmol of the hydrocarbon product per mmol of iron complex.

*GC/MS work was done at the Mass Spectral Facility, Cornell University.

^{**}Completion is when no more hydrocarbon production was observed. Only n-butane and 1-butene were observed.

We prepared several of the potential intermediates in the reaction of $Cp_2Fe_2(CO)_4$ with LiAlH₄, $(CH_3Fe(Cp)(CO)_2, C_2H_5Fe(Cp)(CO)_2$ and $CH_3C(O)Fe(Cp)(CO)_2$) and investigated their reactions with LiAlD₄ in toluene. The methyl complex produced primarily CH_3D and $C_2H_3D_3$ in a 1 to 2 ratio, respectively; the ethyl complex produced C_2H_5D and $C_3H_5D_3$ in a 1 to 2 ratio; and the acetyl complex produced primarily $C_2H_3D_3$, $C_3H_3D_3$ and $C_3H_3D_5$ in a 1/0.3/0.5 ratio. The acetyl reduction was very much more rapid (30 min) than either the methyl or ethyl reductions (2 days). In the methyl and ethyl reactions the C_{n+1} is the predominant product and this strongly suggests a CO insertion step for chain extension. The total yield of hydrocarbons was $\sim 60\%$ based on $RFe(Cp)(CO)_2$. The iron-containing products for the acetyl complex, $CH_3C(O)Fe(Cp)(CO)_2$, are $Cp_2Fe_2(CO)_4$ and $LiCpFe(CO)_2$, similar to the reduction of CO coordinated to $Cp_2Fe_2(CO)_4$ with LiAlH₄. For CH₃Fe(Cp)(CO)₂ and $C_2H_5Fe(Cp)(CO)$, no $Cp_2Fe_2(CO)_4$ was observed. Reduction of the acetyl complexes also produced propene in about the ratio (to propane) observed initially in the reduction of CO in $Cp_2Fe_2(CO)_4$. Thus an acetyl is implicated as an intermediate in the reduction of CO on $Cp_2Fe_2(CO)_4$. The rapidity of the reaction of $CH_3C(O)Fe(Cp)(CO)_2$ with $LiAlH_4$ forming hydrocarbon products is significant mechanistically. It has been previously reported that $CH_3C(O)Fe(Cp)(CO)_2$ was rapidly reduced to $C_2H_5Fe(Cp)(CO)_2$ [24] using BH_3 THF, however this reaction cannot be important in the formation of hvdrocarbons from LiAlH₄ reduction because formation of products from the acetyl complex is much more rapid than from the ethyl complex. The formation of C_2H_6 , C_3H_6 and C_3H_8 upon LiAlH₄ reduction of $CH_3C(O)Fe(Cp)(CO)_2$ must not occur through the ethyl complex.

The apparent significance of CO insertion in the reduction of CO on $Cp_2Fe_2(CO)_4$ led us to investigate the reduction under a CO atmosphere. The gaseous products were CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 , C_4H_8 and C_4H_{10} with the relative yields given in Table 1. The total yield was higher than reduction without a CO atmosphere, but the most obvious effect was the greatly enhanced production of ethylene. Further data must be collected before we can understand this enhanced production of ethylene under a CO atmosphere.

Acknowledgement

We acknowledge the financial support of the National Science Foundation, Grant No. CHE 7904982 for support of this research and the assistance of Dr. Tim Wachs of Cornell University in obtaining the GC-MS data.

References

- 1 W.O. Siegl, J. Organometal. Chem., 92 (1975) 321.
- 2 J. Chatt, G.J. Leigh and N. Thankarajan, J. Organometal. Chem., 29 (1971) 105.
- 3 H.D. Kaesz and R.B. Saillant, Chem. Rev., 72 (1972) 231.
- 4 J.A. Gladysz, G.M. Williams, W. Tam, D.L. Johnson, D.W. Parker and J.C. Selover, Inorg. Chem., 18 (1979) 553.
- 5 S.R. Winter, G.W. Cornett and E.A. Thompson, J. Organometal. Chem., 133 (1977) 339.
- 6 (a) R.P. Stewart, N. Okamoto and W.A.G. Graham, J. Organometal. Chem., 42 (1972) C32;
- (b) J.R. Sweet and W.A.G. Graham, ibid., 173 (1979) C9.
- 7 P.M. Treichel and R.L. Shubkin, Inorg. Chem., 6 (1967) 1328.
- 8 C.P. Catsey, M.A. Andrews and J.E. Rinz, J. Amer. Chem. Soc., 101 (1979) 741.

- 9 C.P. Casey and S.M. Neumann, J. Amer. Chem. Soc., 98 (1976) 5395.
- 10 C.P. Casey, M.A. Andrews and D.R. McAlister, J. Amer. Chem. Soc., 101 (1979) 3371.
- 11 W.K. Wong, W. Tam and J.A. Gladysz, J. Amer. Chem. Soc., 101 (1979) 5440.
- 12 R.L. Pruett, R.C. Schoening, J.L. Vidal and R.A. Fiato, J. Organometal. Chem., 182 (1979) C57.
- 13 C. Masters, Adv. Organometal. Chem., 17 (1979) 61.
- 14 E.L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479.
- 15 J.C. Huffman, J.G. Stone, W.C. Krusell and K.G. Caulton, J. Amer. Chem. Soc., 99 (1977) 5829.
- 16 J.A. Labinger, K.S. Wong and W.R. Scheidt, J. Amer. Chem. Soc., 100 (1978) 3254.
- 17 K. Whitmire and D.F. Shriver, J. Amer. Chem. Soc., 102 (1980) 1456.
- 18 G.C. Demitras and E.L. Muetterties, J. Amer. Chem. Soc., 99 (1977) 2796.
- 19 A. Wong, M. Harris and J.D. Atwood, J. Amer. Chem. Soc., 102 (1980) 4529.
- 20 C. Masters, C. van der Woude and J.A. van Doorn, J. Amer. Chem. Soc., 101 (1979) 1633.
- 21 C.P. Casey and S.M. Neumann, J. Amer. Chem. Soc., 100 (1978) 2544.
- 22 J.A. Gladysz and W. Tam, J. Amer. Chem. Soc., 100 (1978) 2546.
- 23 J.P. Collman and S.R. Winter, J. Amer. Chem. Soc., 95 (1973) 4089.
- 24 J.A. van Doorn, C. Masters and H.C. Volger, J. Organometal. Chem., 105 (1976) 245.
- 25 S.B. Butts, E.M. Holt, S.H. Strauss, N.W. Alcock, R.E. Stimson, and D.F. Shriver, J. Amer. Chem. Soc., 101 (1979) 5864.
- 26 R.E. Stimson and D.F. Shriver, Inorg. Chem., 19 (1980) 1141.
- 27 J.A. Gladysz and J.C. Selover, Tetrahedron Lett., (1978) 319.